

The role of phonological contrastivity in neutral harmony

Jade Jørgen Sandstedt

<https://jsandstedt.hcommons.org/>

University of Edinburgh

January 13 2018

Argument

- ▶ Asymmetric inventory shape and blocking/skipping in harmony systems are closely linked
- ▶ This is predicted by Modified Contrastive Specification (MCS; Dresher, Piggott & Rice 1994; Dresher 2003, 2009)
- ▶ *But* the MCS approach fails to produce valid harmony pairs, such as in Yoruba RTR harmony
- ▶ Proposal: privative features

Outline

1 The role of contrast in harmony

- Symmetric and asymmetric sound inventories
- Harmony and neutral harmony variation

2 Modified Contrastive Specification (MCS)

- Successive Division Algorithm
- Yoruba

3 Challenges to the MCS approach

- Incongruent feature specifications

4 MCS method revisions

- Privative features
- Yoruba revisited
- Harmony and neutral harmony typology

Outline

1 The role of contrast in harmony

- Symmetric and asymmetric sound inventories
- Harmony and neutral harmony variation

2 Modified Contrastive Specification (MCS)

- Successive Division Algorithm
- Yoruba

3 Challenges to the MCS approach

- Incongruent feature specifications

4 MCS method revisions

- Privative features
- Yoruba revisited
- Harmony and neutral harmony typology

Introduction: Vowel harmony

Harmony involves correspondence between all segments bearing a harmonizing feature

(i) **Yoruba (Atlantic-Congo)** (Archangeli & Pulleyblank 1989; Ola Orie 2001, 2003; Dresher 2013, 2015)

ATR	ògèdè	*ògèdè	'incantations'
RTR	ògèdè	*ògèdè	'banana'

The role of contrast in vowel harmony

- ▶ Ekiti Yoruba has symmetric ATR/RTR contrasts (Ola Orie 2003)
- ▶ Ifé Yoruba lacks RTR high vowels (Archangeli & Pulleyblank 1989; Ola Orie 2001, 2003)

(2) Non-low vowel inventory in Ekiti and Ifé Yoruba

	ATR		RTR	
HIGH	i	u	i	u
MID	e	o	ɛ	ɔ

(a) Ekiti Yoruba

	ATR		RTR	
HIGH	i	u		
MID	e	o	ɛ	ɔ

(b) Ifé Yoruba

Inventory symmetries and vowel harmony

- ▶ Ekiti Yoruba paired mid and high vowels display full harmony
 - ▶ [RTR] /ɛ, ɔ, a, ɪ, u/
 - ▶ [ATR] /e, o, i, u/

(3) RTR/ATR paired Ekiti Yoruba mid vowels

ATR	olè	*ɔlè	'thief'
	ògèdè	*ògèdè	'incantations'
RTTR	ɔsɛ	*osɛ	'soap'
	ògèdɛ	*ògèdɛ	'banana'

(4) RTR/ATR Ekiti Yoruba high vowels

	Ekiti		
ATR	èbúte	'harbor'	
	éúro	'bitter-leaf'	
RTTR	ɔrúkɔ	'name'	
	èlùbɔ	'yam flour'	

Inventory asymmetries and vowel harmony

- Ifẹ́ Yoruba unpaired /i, u/ display neutral harmony
 - [RTR] /ɛ, ɔ, a /
 - [ATR] /e, o, i, u/

(5) RTR/ATR paired Ifẹ́ Yoruba mid vowels

ATR	olè	*ɔlè	'thief'
	ògèdè	*ògèdè	'incantations'
RTR	ɔsɛ	*osɛ	'soap'
	ògèdɛ	*ògèdɛ	'banana'

(6) RTR/ATR unpaired Ifẹ́ Yoruba high vowels

ATR	èbúté	*èbúté	'harbor'
	eúro	*éúro	'bitter-leaf'
RTR	ɔrúkɔ	*orúkɔ	'name'
	èlùbɔ	*èlùbɔ	'yam flour'

Phonological behavior and contrasts are linked

- ▶ There are differences in what kinds of vowels are phonologically relevant
 - ▶ [ATR] /e, o, i, u/ in Ekiti Yoruba
 - ▶ [ATR] /e, o/ in Ifé Yoruba

(7) Phonologically relevant ATR/RTR vowels in Ekiti and Ifé Yoruba

	ATR		RTR	
HIGH	i	u	i	u
MID	e	o	ɛ	ɔ

(a) Ekiti Yoruba

	ATR		RTR	
HIGH	i	u		
MID	e	o	ɛ	ɔ

(b) Ifé Yoruba

Neutral harmony variation

The link between phonological contrasts and disharmony is not one to one

- RTR/ATR unpaired high vowels display variation across Yoruba varieties

(8) Yoruba skipping and blocking

Ifé Yoruba Standard Yoruba

a.	èbúé	èbúé	port
b.	ògùrò	ògùrò	stick for stirring
c.	ɔdíðɛ	ɔdíðɛ	parrot
d.	ɛlùbó	èlùbó	yam flour

- Ifé Yoruba: harmonic skipping:
- Standard Yoruba: harmonic blocking:

Outline

1 The role of contrast in harmony

- Symmetric and asymmetric sound inventories
- Harmony and neutral harmony variation

2 Modified Contrastive Specification (MCS)

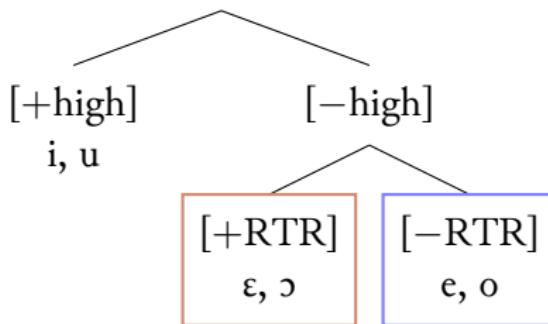
- Successive Division Algorithm
- Yoruba

3 Challenges to the MCS approach

- Incongruent feature specifications

4 MCS method revisions

- Privative features
- Yoruba revisited
- Harmony and neutral harmony typology

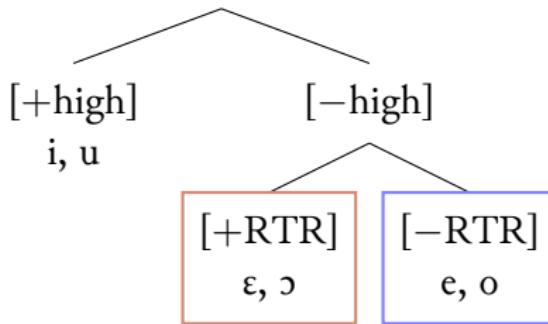

Why are inventory shapes and harmonic behaviors related?

Modified Contrastive Specification (MCS; Dresher, Piggott & Rice 1994; Dresher 2003, 2009)

Why are inventory shapes and harmonic behaviors related?

Modified Contrastive Specification (MCS; Dresher, Piggott & Rice 1994; Dresher 2003, 2009)

- ▶ phonological features specified according to hierarchical divisions of a language's sound inventory



Example feature hierarchy

Why are inventory shapes and harmonic behaviors related?

Modified Contrastive Specification (MCS; Dresher, Piggott & Rice 1994; Dresher 2003, 2009)

- ▶ phonological features specified according to hierarchical divisions of a language's sound inventory
- ▶ variation in neutral harmony are representationally derived

Example feature hierarchy

MCS architectural assumptions

Three principle components

- 1 Contrastivist Hypothesis (Hall 2007, Dresher 2009): only those features which serve to distinguish segments in the underlying sound inventory may be phonologically active
- 2 Successive Division Algorithm (SDA; Dresher 2009): sound inventories are divided into binary feature classes
- 3 Feature ordering: the relative hierarchical ranking of features is cross-linguistically variable

MCS architectural assumptions

Three principle components

- ➊ Contrastivist Hypothesis (Hall 2007, Dresher 2009): only those features which serve to distinguish segments in the underlying sound inventory may be phonologically active
- ➋ Successive Division Algorithm (SDA; Dresher 2009): sound inventories are divided into binary feature classes
- ➌ Feature ordering: the relative hierarchical ranking of features is cross-linguistically variable

MCS architectural assumptions

Three principle components

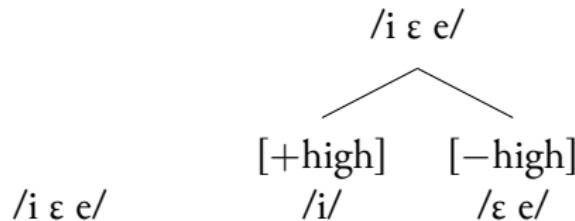
- ① Contrastivist Hypothesis (Hall 2007, Dresher 2009): only those features which serve to distinguish segments in the underlying sound inventory may be phonologically active
- ② Successive Division Algorithm (SDA; Dresher 2009): sound inventories are divided into binary feature classes
- ③ Feature ordering: the relative hierarchical ranking of features is cross-linguistically variable

MCS architectural assumptions

Three principle components

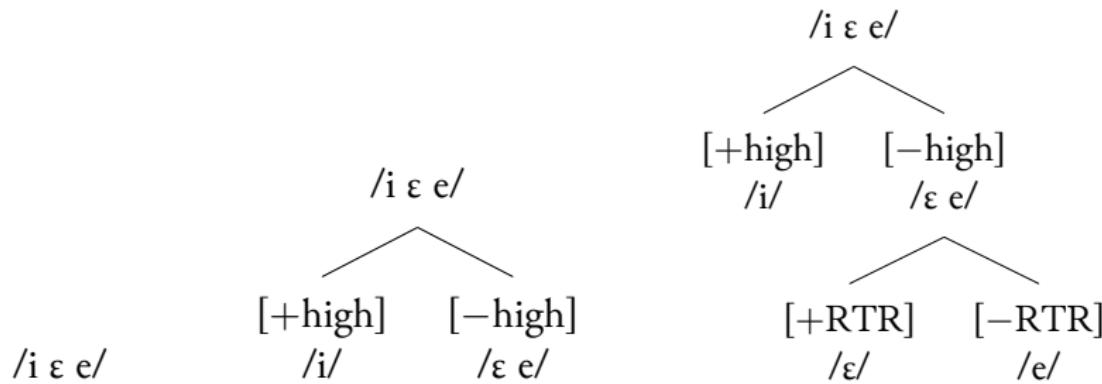
- ① Contrastivist Hypothesis (Hall 2007, Dresher 2009): only those features which serve to distinguish segments in the underlying sound inventory may be phonologically active
- ② Successive Division Algorithm (SDA; Dresher 2009): sound inventories are divided into binary feature classes
- ③ Feature ordering: the relative hierarchical ranking of features is cross-linguistically variable

Successive Division Algorithm (Dresher 2009)


Successive Division Algorithm (Dresher 2009)

- ① Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.

/i ε e/


Successive Division Algorithm (Dresher 2009)

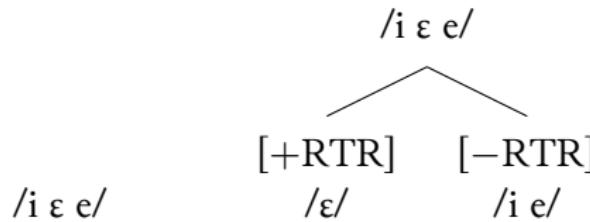
- ① Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- ② If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.

Successive Division Algorithm (Dresher 2009)

- 1 Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- 2 If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
- 3 Repeat step (2) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

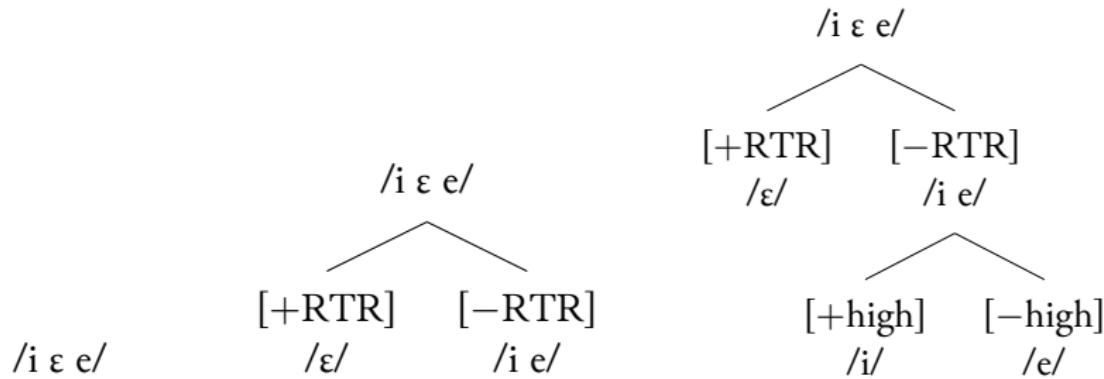
Successive Division Algorithm (Dresher 2009)

- ① Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- ② If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
- ③ Repeat step (2) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.


Successive Division Algorithm (Dresher 2009)

- ① Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- ② If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
- ③ Repeat step (2) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

/i ε e/


Successive Division Algorithm (Dresher 2009)

- ① Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- ② If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
- ③ Repeat step (2) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

Successive Division Algorithm (Dresher 2009)

- 1 Begin with *no* feature specifications: assume all sounds are allophones of a single undifferentiated phoneme.
- 2 If the set is found to consist of more than one contrasting member, select a feature and divide the set into as many subsets as the feature allows for.
- 3 Repeat step (2) in each subset: keep dividing up the inventory into sets, applying successive features in turn, until every set has only one member.

Representational motivations: phonological activity

- ▶ Phonological behavior is influenced by feature scope and vice versa

(9) [RTR] contrasts in Yoruba

[RTR]	ɔkɔ	husband
[ATR]	oko	farm

ATR	e	o
RTR	ɛ	ɔ

[RTR]

Representational motivations: phonological activity

- ▶ Phonological behavior is influenced by feature scope and vice versa

(9) [RTR] contrasts in Yoruba

[RTR] ɔkɔ husband

[ATR] oko farm

[RTR] igbé excrement

[ATR] igbe noise

ATR	e	o
RTR	ɛ	ɔ

[RTR]

Representational motivations: phonological activity

- ▶ Phonological behavior is influenced by feature scope and vice versa

(9) [RTR] contrasts in Yoruba

[RTR]	ɔkɔ	husband
[ATR]	oko	farm
[RTR]	ɪgbɛ	excrement
[ATR]	igbe	noise

	high	i	u
non-high	ATR	e	o
	RTR	ɛ	ɔ

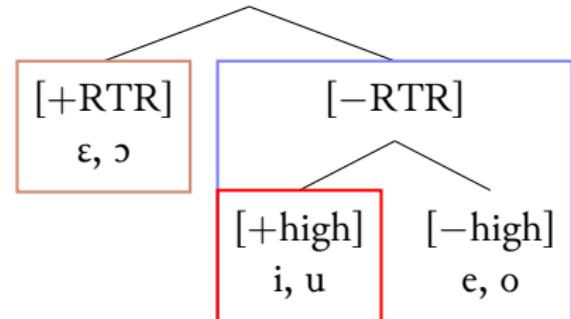
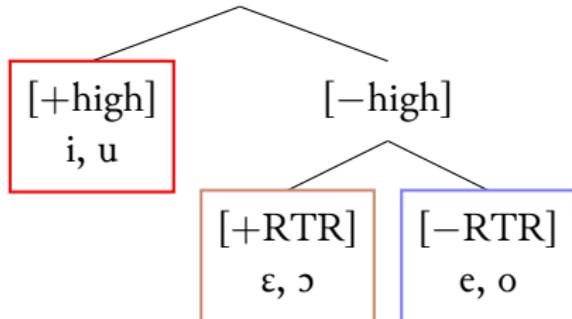
[high] > [RTR]

Representational motivations: phonological activity

- ▶ Phonological behavior is influenced by feature scope and vice versa

(9) [RTR] contrasts in Yoruba

[RTR]	ɔkɔ	husband
[ATR]	oko	farm
[RTR]	ɪgbɛ	excrement
[ATR]	igbe	noise



	high	i	u
non-high	ATR	e	o
	RTR	ɛ	ɔ

[high] > [RTR]

ATR	high	i	u
non-high	e	o	
RTR		ɛ	ɔ

[RTR] > [high]

Yoruba contrastive feature hierarchies

[+high]	i	u
	e	o
[-high]	ɛ	ɔ

[high] > [RTR] (Ifẹ́ Yoruba)

-RTR	[+high]	i	u
		e	o
[+RTR]	[-high]	ɛ	ɔ

[RTR] > [high] (Standard Yoruba)

Strictly representational account of neutral harmony variation

- ▶ The MCS approach treats cross-dialectal variation in Yoruba simply as differences in feature categorization
 - ▶ Yoruba harmony principle: spread [RTR] leftwards

Ifẹ Yoruba transparency			Standard Yoruba blocking				
/è	lù	bó/	/è	lù	bó/		
[-high]	[+high]	[-high]	[-RTR]	← [-RTR]	↔ [+RTR]		
[+RTR]	←	←	[+RTR]	[+high]			
[è]	lù	bó]	[è]	lù	bó]		
	i ε e			ε i e			
[high]	+	—	—	[RTR]	+	—	—
[RTR]	+	—		[high]	+	—	
(a) Ifẹ Y.: [high] > [RTR]			(b) Standard Y.: [RTR] > [high]				

MCS advantages

The MCS approach has a number of qualities that are worth pursuing:

- ▶ provides a natural motivation for neutral harmony
- ▶ makes a narrow set of testable predictions and provides a good typological fit
- ▶ allows for a very economical grammatical model of basic harmony patterns

MCS advantages

The MCS approach has a number of qualities that are worth pursuing:

- ▶ provides a natural motivation for neutral harmony
- ▶ makes a narrow set of testable predictions and provides a good typological fit
- ▶ allows for a very economical grammatical model of basic harmony patterns

MCS advantages

The MCS approach has a number of qualities that are worth pursuing:

- ▶ provides a natural motivation for neutral harmony
- ▶ makes a narrow set of testable predictions and provides a good typological fit
- ▶ allows for a very economical grammatical model of basic harmony patterns

MCS advantages

The MCS approach has a number of qualities that are worth pursuing:

- ▶ provides a natural motivation for neutral harmony
- ▶ makes a narrow set of testable predictions and provides a good typological fit
- ▶ allows for a very economical grammatical model of basic harmony patterns

Outline

1 The role of contrast in harmony

- Symmetric and asymmetric sound inventories
- Harmony and neutral harmony variation

2 Modified Contrastive Specification (MCS)

- Successive Division Algorithm
- Yoruba

3 Challenges to the MCS approach

- Incongruent feature specifications

4 MCS method revisions

- Privative features
- Yoruba revisited
- Harmony and neutral harmony typology

Preview: challenges and solutions to the MCS approach

There are a number of basic problems in MCS

- ▶ MCS cannot produce valid harmony alternates within asymmetric inventory shapes
 - ▶ leads to featurally incongruent harmony pairs:
e.g. [−RTR, −high] /e/ — [+RTR, −low] /e/ in Standard Yoruba

Preview: challenges and solutions to the MCS approach

There are a number of basic problems in MCS

- ▶ MCS cannot produce valid harmony alternates within asymmetric inventory shapes
 - ▶ leads to featurally incongruent harmony pairs:
e.g. $[-RTR, -high]$ /e/ — $[+RTR, -low]$ /ɛ/ in Standard Yoruba

Preview: challenges and solutions to the MCS approach

There are a number of basic problems in MCS

- ▶ MCS cannot produce valid harmony alternates within asymmetric inventory shapes
 - ▶ leads to featurally incongruent harmony pairs:
e.g. $[-\text{RTR}, -\text{high}] /e/$ — $[\text{+RTR}, -\text{low}] /ɛ/$ in Standard Yoruba

The problem with asymmetric inventories

The problem with asymmetric inventories

- ▶ Yoruba high vowels /i, u/-*/ɪ, ʊ/
 - ▶ skipping (transparent) in Ifé Yoruba
 - ▶ blocking (opaque) in Standard Yoruba

(8) Skipping and blocking high vowels in Yoruba

	Ifé	Standard	
ATR	èbúté	èbúté	‘port’
	ògùrò	ògùrò	‘stick for stirring’
RTTR	ɔdídɛ	odídɛ	‘parrot’
	èlùbɔ̄	èlùbɔ̄	‘yam flour’

The problem with asymmetric inventories

- Yoruba low /a/-*/ə/

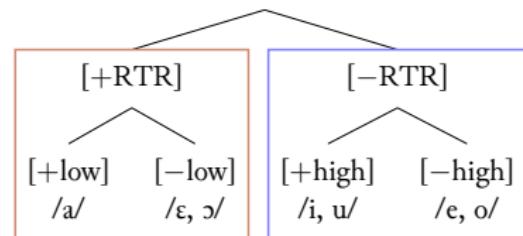
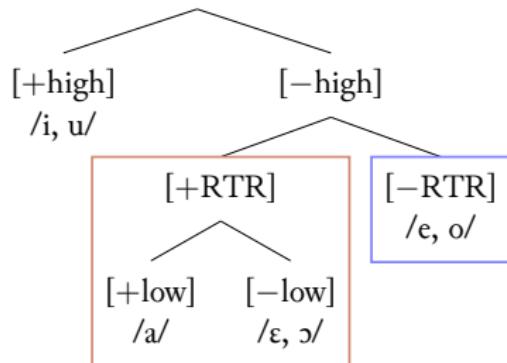
(10) **Non-alternating low /a/ (*/ə/)**

ATR	arè	*ərè	crown
	ahoro	*əhorο	ruins
RTR	àgbèdè		blacksmith
	abɔ		female

The problem with asymmetric inventories

- ▶ Yoruba low /a/-*/ə/
 - ▶ harmonic (visible) across all Yoruba dialects

(i) Non-alternating low /a/ (*/ə/)



ATR	arè	*ərè	crown
	ahoro	*əhorο	ruins
RTR	àgbèdè		blacksmith
	abɔ		female

(ii) Non-alternating low /a/ is harmonic trigger

ɔba	*oba	king
èpà	*èpà	peanut
òyàyà	*òyàyà	cheerfulness
eréta	*eréta	place of ogun worship in Ifé

Ifé and Standard Yoruba contrastive feature hierarchies

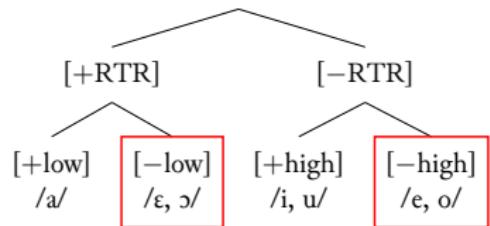
(12)

+high		i	u	
-high	-RTR		e	o
	+RTR	-low	ɛ	ɔ
		+low	a	

(a) Ifé Yoruba: [high] > [RTR]

-RTR	+high	i	u
	-high	e	o
+RTR	-low	ɛ	ɔ
	+low	a	

(b) Standard Yoruba: [RTR] > [high]


Incompatible harmony pairs

Contrastive feature hierarchies produce featurally incompatible harmonic pairs in asymmetric inventories

- ▶ E.g. Standard Yoruba mid vowels

(13) Incongruent binary harmony pairs

/i, u/	/e, o/	/ɛ, ɔ/	/a/
[-RTR]	[-RTR]	[+RTR]	[+RTR]
[+high]	[-high]	[-low]	[+low]

Incompatible harmony pairs

[+RTR] /ɛ/ lacks any [±high] specification

- ▶ unclear under MCS what the [–RTR] harmony output should be
 - ▶ [–RTR, –high] [e]?
 - ▶ [–RTR, +high] [i]?

(14) [±RTR] /ɛ, e/ harmonic pairs

ATR	ebè	*ibè	heap of yams
	epo	*ipo	oil
RTR	èdò	*àdò	liver
	èpà	*àpà	peanut

Incompatible harmony pairs

[−RTR] /e/ lacks any [±low] specification

- ▶ unclear under MCS what the [+RTR] harmony output should be
 - ▶ [+RTR, −low] [ɛ]?
 - ▶ [+RTR, +low] [a]?

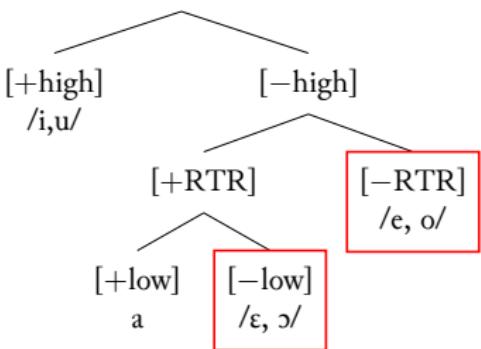
(14) [±RTR] /ɛ, e/ harmonic pairs

ATR	ebè	*ibè	heap of yams
	epo	*ipo	oil
RTR	èdò	*àdò	liver
	èpà	*àpà	peanut

Incompatible harmony pairs

(15) Contrastive hierarchies fail to produce /e/ → [ɛ] harmony mapping

	/è	dɔ/	/è	pà/
[RTR]	[+RTR]	←	[+RTR]	[+RTR]
[high]	[−high]		[−high]	
[low]		[−low]		[+low]
	[ɛ/*à]	dɔ]	[ɛ/*à]	pà]


Incompatible harmony pairs

Ifé Yoruba features a similar problem

- ▶ [−RTR] [e, o] and [+RTR, −low] [ɛ, ɔ]

(i6) Incongruent feature specifications in harmonic pairs

i, u	e, o	ɛ, ɔ	a
[+high]	[−high]	[−high]	[−high]
[−RTR]	[+RTR]	[+RTR]	
[−low]			[+low]

Incompatible harmony pairs

(17) Contrastive hierarchies fail to produce /e/→[ɛ] harmony mapping

	/è	dɔ/	/è	pà/
[high]	[−high]	[−high]	[−high]	[−high]
[RTR]	[+RTR]	←	[+RTR]	[+RTR]
[low]		[−low]		[+low]
	[ɛ/*à]	dɔ]	[ɛ/*à]	pà]

Incompatible harmony pairs

Harmonic pairing is inherently faulty

- ▶ see also Dresher's (2013) depiction of Anywa (Nilotic) dental harmony
- ▶ see also Hall & Hall's (2016) analysis of Pulaar (Atlantic-Congo) ATR harmony

The celebrated advantage of capturing asymmetric harmony systems necessarily leads to incomplete/incompatible harmony outputs

Outline

1 The role of contrast in harmony

- Symmetric and asymmetric sound inventories
- Harmony and neutral harmony variation

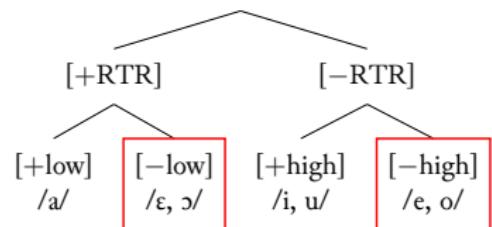
2 Modified Contrastive Specification (MCS)

- Successive Division Algorithm
- Yoruba

3 Challenges to the MCS approach

- Incongruent feature specifications

4 MCS method revisions

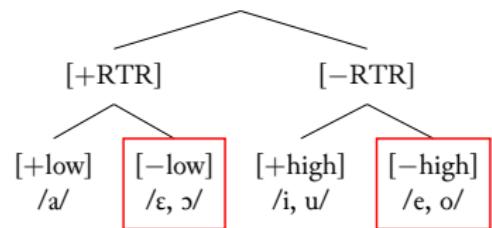

- Privative features
- Yoruba revisited
- Harmony and neutral harmony typology

The problem

- ▶ [-RTR] /e, o/ have no specification for [low]
- ▶ [+RTR] /ɛ, ɔ/ should not as well

(18) Incongruent binary harmony pairs

/i, u/	/e, o/	/ɛ, ɔ/	/a/
[-RTR]	[-RTR]	[+RTR]	[+RTR]
[+high]	[-high]	[-low]	[+low]

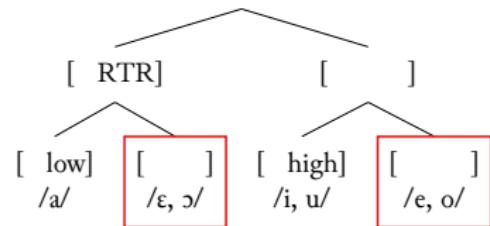

The problem

- ▶ [−RTR] /e, o/ have no specification for [low]
- ▶ [+RTR] /ɛ, ɔ/ should not as well

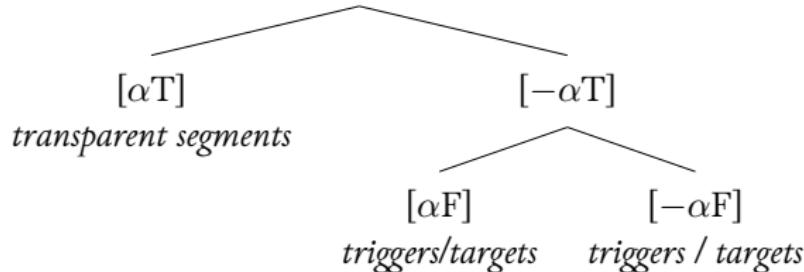
Binary contrastive feature hierarchies inevitably lead to a kind of feature overspecification

(18) Incongruent binary harmony pairs

/i, u/	/e, o/	/ɛ, ɔ/	/a/
[−RTR]	[−RTR]	[+RTR]	[+RTR]
[+high]	[−high]	[−low]	[+low]

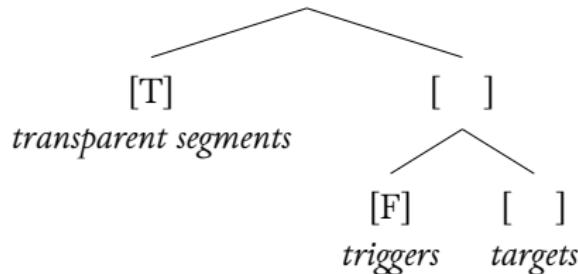

The problem

- ▶ [-RTR] /e, o/ have no specification for [low]
- ▶ [+RTR] /ɛ, ɔ/ should not as well


Binary contrastive feature hierarchies inevitably lead to a kind of feature overspecification

(19) Congruent privative harmony pairs

/i, u/	/e, o/	/ɛ, ɔ/	/a/
[]	[]	[RTR]	[RTR]
[high]	[]	[]	[low]


Binary feature hierarchy harmony typology

(20) Harmony visibility and activity

	visible	invisible
active	<i>harmonic trigger/target (specified)</i>	
inactive		<i>transparent segments (underspecified)</i>

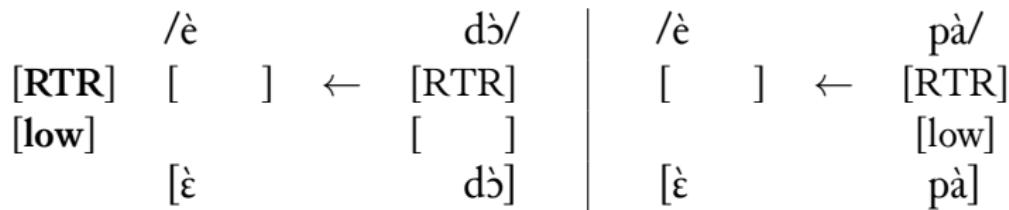
Privative feature hierarchy harmony typology

(21) Harmony visibility and activity

	visible	invisible
active	<i>trigger</i> (specified)	
inactive	<i>target</i> (non-specified)	<i>transparent segment</i> (underspecified)

Locality domains using privative feature hierarchies

What are viable (visible) harmony targets?


- ▶ Binary feature hierarchies: harmony targets $[\pm F]$ -specified segments
- ▶ Privative feature hierarchies: ?

Locality domains using privative feature hierarchies

What are viable (visible) harmony targets?

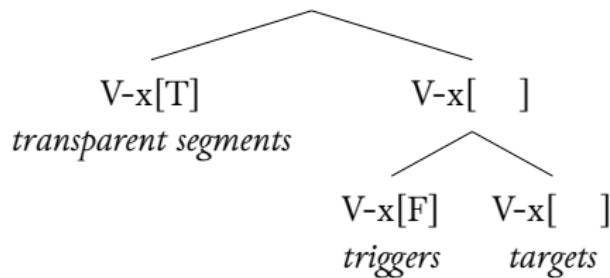
- ▶ Binary feature hierarchies: harmony targets $[\pm F]$ -specified segments
- ▶ Privative feature hierarchies: ?

(2.2) Harmony visibility

Feature nodes

Privative feature hierarchies require some mechanism to distinguish non-specified (visible) from underspecified (invisible) segments

Feature nodes


Privative feature hierarchies require some mechanism to distinguish non-specified (visible) from underspecified (invisible) segments

- ▶ Parallel Structures Model of feature geometry (Morén 2003, Iosad 2017)
 - ▶ V-manner/place nodes serve as potential landing sites for assimilatory processes

Feature nodes

Privative feature hierarchies require some mechanism to distinguish non-specified (visible) from underspecified (invisible) segments

- ▶ Parallel Structures Model of feature geometry (Morén 2003, Iosad 2017)
 - ▶ V-manner/place nodes serve as potential landing sites for assimilatory processes

(23) Harmony segments

	<i>trigger</i>	<i>target</i>	<i>transparent segment</i>
[F]	V-x[F]	V-x[]	

MCS revisions summary

Binary feature hierarchies

- ▶ harmonic (visible) and transparent (invisible) segments
- ▶ featurally incongruent harmony pairs in asymmetric inventories

MCS revisions summary

Binary feature hierarchies

- ▶ harmonic (visible) and transparent (invisible) segments
- ▶ featurally incongruent harmony pairs in asymmetric inventories

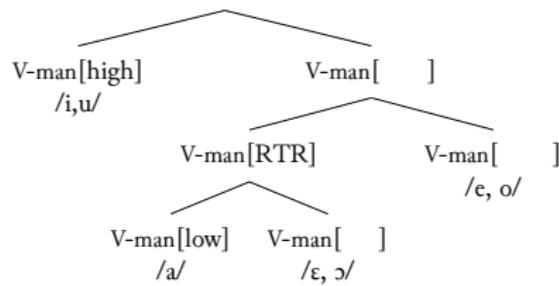
Privative feature hierarchies

- ▶ harmonic (visible) and transparent (invisible) segments
- ▶ correct harmony pairing
- ▶ locality domains defined by PSM feature nodes

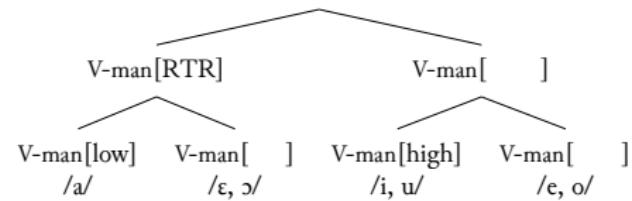
Yoruba revisited

Harmony principles (based on Dresher 2013, 2015)

- ▶ **Yoruba vowel harmony:** Spread [RTR] leftwards
- ▶ **Distributional assumptions:** Non-final (non-low) vowels are underlyingly [RTR]-non-specified


Yoruba revisited

Harmony principles (based on Dresher 2013, 2015)


- ▶ **Yoruba vowel harmony:** Spread [RTR] leftwards
- ▶ **Distributional assumptions:** Non-final (non-low) vowels are underlyingly [RTR]-non-specified

Representations

- ▶ **Ifé Yoruba:** [high] > [RTR]
- ▶ **Standard Yoruba:** [RTR] > [high]

[high] > [RTR] (Ifé Yoruba)

[RTR] > [high] (Standard Yoruba)

Yoruba mid vowel harmony

In both Ifé and Standard Yoruba

- mid vowels display both surface RTR and ATR harmony

(5) RTR/ATR paired Yoruba mid vowels

ATR	olè	*ɔlè	'thief'
	ògèdè	*ògèdè	'incantations'
RTTR	ɔsɛ	*osɛ	'soap'
	ògèdɛ	*ògèdɛ	'banana'

Dominant/recessive harmony

All harmony systems are asymmetric; ATR harmony comes for free

- ▶ /ògèdè/ → [ògèdè] “incantations”
- ▶ /ògèdè/ → [ɔgèdè] “banana”

(24) RTR harmony among mid vowels

	/ò		gè		dè/
[RTR]	[RTR]	←	[RTR]	←	[RTR]
[high]	[]		[]		[]
	[ɔ]		gɛ		dɛ]

(25) ATR harmony involves no feature spreading

	/ò		gè		dè/
[RTR]	[]		[]		[]
[high]	[]		[]		[]
	[ò]		gè		dè]

Non-alternating harmony triggers

- ▶ Yoruba low /a/–*/ə/
 - ▶ harmonic across all Yoruba dialects

(I) Non-alternating low /a/ (*/ə/)

ATR	arè	*ərè	crown
	ahoro	*əhorο	ruins
RTR	àgbèdε		blacksmith
	abɔ		female

(II) Non-alternating low /a/ is harmonic trigger

ɔba	*oba	king
èpà	*èpà	peanut
òyàyà	*òyàyà	cheerfulness
eréta	*eréta	place of ogun worship in Ifé

“Harmonic blocking”

Under a privative MCS account, there is no such thing as harmonic blocking

- ▶ non-RTR vowels have no ATR feature to spread (26)

(26) Non-alternating /a/ in ATR harmony

	/a	ho	ro/
[RTR]	[RTR]	[]	[]
[low]	[low]		
[high]		[]	[]
	[a]	ho	ro]

“Harmonic blocking”

Yoruba [RTR] /a/ is a regular harmonic trigger

- ▶ /eréta/ → [eréta] “place of ogun worship in Ife”

(27) /a/ as RTR harmony trigger

	/er	ét	a/
[RTR]	[RTR]	← [RTR]	← [RTR]
[low]			[low]
[high]	[]	[]	
	[er	ét	a]

Transpareny (skipping) and blocking

Ifé and Standard Yoruba differ in the behavior of high vowel visibility

(8) Skipping and blocking high vowels in Yoruba

	Ifé	Standard	
ATR	èbúté	èbúté	'port'
	ògùrò	ògùrò	'stick for stirring'
RTR	ɔdídé	odídé	'parrot'
	èlùbó	èlùbó	'yam flour'

Transparency (skipping) in Ifé Yoruba

Transparency is a straightforward effect of underspecification

- ▶ [high] > [RTR]

(28) Word-medial high vowel ATR harmony

	/è	bú	te/
[high]	[]	[high]	[]
[RTR]	[]		[]
	[è]	bú	te]

(29) Word-medial high vowel RTR transparency

	/è	lù	bó/
[high]	[]	[high]	[]
[RTR]	[RTR]	←	← [RTR]
	[è]	lù	bó]

Neutral blocking in Standard Yoruba

Standard Yoruba categorizes [high] within the scope of [RTR]

- ▶ [RTR] > [high]: high vowels are visible harmony targets

Neutral blocking in Standard Yoruba

Standard Yoruba categorizes [high] within the scope of [RTR]

- ▶ [RTR] > [high]: high vowels are visible harmony targets

Standard Yoruba lacks retracted high vowel counterparts

- ▶ *[RTR, high] /i, u/—invalid [RTR] harmony output
- ▶ results in neutral blocking

Neutral blocking in Standard Yoruba

Standard Yoruba categorizes [high] within the scope of [RTR]

- ▶ [RTR] > [high]: high vowels are visible harmony targets

Standard Yoruba lacks retracted high vowel counterparts

- ▶ *[RTR, high] /i, u/—invalid [RTR] harmony output
- ▶ results in neutral blocking

(30) Word-medial high vowel ATR harmony

	/è	bú	te/
[RTR]	[]	[×]	[]
[high]	[]	[high]	[]
	[è	bú	te]

(31) (*[RTR, high]) neutral blocking in Standard Yoruba

	/è	lù	bó/
[RTR]	[]	[×]	← [RTR]
[high]	[]	[high]	
	[è	lù	bó]

Harmony analysis summary

Harmony principle:

- ▶ Spread [RTR] leftwards

Representations:

- ▶ Ifẹ́ Yoruba: [high] > [RTR]
- ▶ Standard Yoruba: [RTR] > [high]

Harmony patterns

- ▶ [RTR] harmony: ògèdè “banana”, ògèdè “incantations”
- ▶ Harmonic blocking: ahoró “ruins”, òyàyà “cheerfulness”
- ▶ Neutral blocking (Standard Yoruba): èlùbó “yam flour”
- ▶ Transparency (Ifẹ́ Yoruba): èlùbó “yam flour”

Conclusions

Binary Modified Contrastive Specification

- ▶ provides a natural motivation for neutral harmony
- ▶ provides an overall good typological fit
- ▶ allows for a very economical grammatical model of basic harmony patterns
- * featurally incompatible harmony pairing
 - ▶ predictable by-product of the use of binary features

Privative Modified Contrastive Specification

- ▶ featurally congruent harmony pairing
- ▶ require feature nodes to define locality domains
- ▶ natural motivation for dominant/recessive style asymmetries in harmony systems
- ▶ captures neutral as well as harmonic blocking

Cited works

Archangeli, Diana & Douglas Pulleyblank. 1989. Yoruba vowel harmony. *Linguistic Inquiry* 20(2). 173–217.

Dresher, B. Elan. 2003. The contrastive hierarchy in phonology. *Toronto Working Papers in Linguistics* 20. 47–62.

Dresher, B. Elan. 2009. *The contrastive hierarchy in phonology*. Cambridge: Cambridge University Press.

Dresher, B. Elan. 2013. Contrastive features and microvariation in vowel harmony. In Stefan Keine & Shayne Sloggett (eds.), *NELS42: Proceedings of the Forty-Second Annual Meeting of the North East Linguistic Society, University of Toronto*, vol. 1, 141–53. Amherst: GLSA, University of Massachusetts.

Dresher, B. Elan. 2015. The motivation for contrastive feature hierarchies in phonology. *Linguistic Variation* 15. 1–40.

Dresher, B. Elan, Glyne Piggott & Keren Rice. 1994. Contrast in phonology: Overview. *Toronto Working Papers in Linguistics* 14. iii–xvii.

Hall, Daniel Currie. 2007. *The role and representation of contrast in phonological theory*. Toronto: University of Toronto dissertation.

Hall, Daniel Currie & Kathleen Currie Hall. 2016. Marginal contrasts and the